Selected readings for the summer school 2007:
Books:

I. Cohomology of groups

Books:
1. Brown, Kenneth, Cohomology of groups,
Graduate Texts in Mathematics, 87. Springer-Verlag, New York,
1994. x+306 pp.
2. Evens, Leonard, The cohomology of groups,
Oxford Mathematical Monographs, Oxford University Press, New York,
1991. xii+159 pp.

3. D.J. Benson, Representations and cohomology, two volumes,
Cambridge ; New York : Cambridge University Press, 1991

4. Borel, A.; Wallach, N.,
Continuous cohomology, discrete subgroups, and representations of
reductive groups.
Second edition. Mathematical Surveys and Monographs, 67.
American Mathematical Society, Providence, RI, 2000. xviii+260 pp.

II. K-theory
Books:

Algebraic K-theory

1. H. Bass, A. O. Kuku and C. Pedrini,
Algebraic K-theory and its applications.
Proceedings of the workshop and symposium held in Trieste, September
1--19, 1997.
World Scientific Publishing Co., Inc., River Edge, NJ, 1999. xii
+607 pp.
2. Bass, Hyman, Algebraic K-theory. W. A. Benjamin, Inc.,
New York-Amsterdam 1968 xx+762 pp.
3. Rosenberg, Jonathan,
Algebraic K-theory and its applications. Graduate Texts in
Mathematics, 147. Springer-Verlag, New York, 1994. x+392 pp.
4. Milnor, John,
Introduction to algebraic K-theory.
Annals of Mathematics Studies, No. 72. Princeton University
Press, Princeton, N.J.
5. Eric M. Friedlander and Daniel R. Grayson,
Handbook of K-theory. Vol. 1, 2.
Springer-Verlag, Berlin, 2005. Vol. 1: xiv+535 pp.; Vol. 2: pp. i--
x and 537--1163.

Topological K-theory

6. Atiyah, M. F. K-theory.
Notes by D. W. Anderson. Second edition. Advanced Book Classics.
Addison-Wesley Publishing Company, Advanced Book Program,
Redwood City, CA, 1989. xx+216 pp.

7. R.dam, M.; Larsen, F.; Laustsen, N., An introduction to K-
theory for $C\sp *$-algebras.
London Mathematical Society Student Texts, 49. Cambridge
University Press, Cambridge, 2000. xii+242 pp.

K-groups of integers

8. Bloch, Spencer J.,
Higher regulators, algebraic K-theory, and zeta functions of
elliptic curves.
CRM Monograph Series, 11. American Mathematical Society,
Providence, RI, 2000.
x+97 pp.

9. Lluis-Puebla, E.; Loday, J.-L.; Gillet, H.; Soul? C.; Snaith, V.
Higher algebraic K-theory: an overview.
Lecture Notes in Mathematics, 1491. Springer-Verlag, Berlin, 1992.
x+164 pp.

Homological algebras

10. Rotman, Joseph J., An introduction to homological algebra.
Pure and Applied Mathematics, 85. Academic Press, Inc.
[Harcourt Brace Jovanovich, Publishers], New York-London, 1979. xi
+376 pp.

11. Weibel, Charles A.,
An introduction to homological algebra.
Cambridge Studies in Advanced Mathematics, 38. Cambridge
University Press, Cambridge, 1994. xiv+450 pp.

12. Gelfand, Sergei I.; Manin, Yuri I.,
Methods of homological algebra. Second edition.
Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xx
+372 pp.

Other related books

13. Lk, Wolfgang,
Transformation groups and algebraic K-theory.
Lecture Notes in Mathematics, 1408. Mathematica Gottingensis.
Springer-Verlag, Berlin, 1989.

III. Buildings
1. Brown, Kenneth S. Buildings, Springer-Verlag, New York, 1989. viii
+215 pp.
2. Abramenko, Peter Twin buildings and applications to S-arithmetic
groups.
Lecture Notes in Mathematics, 1641. Springer-Verlag, Berlin, 1996. x
+123 pp.
3. Garrett, Paul Buildings and classical groups.
Chapman & Hall, London, 1997. xii+373 pp.

IV. Farrell-Jones isomorphism and Novikov conjectures

1. Kreck, Matthias; Lk, Wolfgang, The Novikov conjecture. Geometry
and algebra.
Oberwolfach Seminars, 33. Birkh ser Verlag, Basel, 2005. xvi+267 pp.
2. Farrell, F. T. Lectures on surgical methods in rigidity.
Published for the Tata Institute of Fundamental Research, Bombay; by
Springer-Verlag, Berlin, 1996. iv+98 pp.

Copyright © 2006, CMS  All Rights Reserved.
 
Address: Mailbox 1511, Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China
Phone: 0086-571-87953030 Fax: 0086-571-87953035